Human movement variability, nonlinear dynamics, and pathology: is there a connection?
نویسندگان
چکیده
Fields studying movement generation, including robotics, psychology, cognitive science, and neuroscience utilize concepts and tools related to the pervasiveness of variability in biological systems. The concept of variability and the measures for nonlinear dynamics used to evaluate this concept open new vistas for research in movement dysfunction of many types. This review describes innovations in the exploration of variability and their potential importance in understanding human movement. Far from being a source of error, evidence supports the presence of an optimal state of variability for healthy and functional movement. This variability has a particular organization and is characterized by a chaotic structure. Deviations from this state can lead to biological systems that are either overly rigid and robotic or noisy and unstable. Both situations result in systems that are less adaptable to perturbations, such as those associated with unhealthy pathological states or absence of skillfulness.
منابع مشابه
ارزیابی عملکرد ووشوکاران با اندازه گیری میزان پیچیدگی سیستم
Objectives: Multiplicity of degrees of freedom in biological systems is the source of variability and indicates their health, flexibility, and their ability to cope with different individual, environmental, and task constraints. From nonlinear dynamical systems, their perspective of the variability of a system, can be quantified by measuring the movement pattern complexity. In this study the a...
متن کاملEffect of nonlinear pedagogy on the performance of the short backhand serve of badminton
Motor learning or the acquisition of coordination is a process of searching for stable functional coordination patterns, into which a system can settle during a task or activity. Human as complex creatures can choose the best pattern based on conditions within different coordination patterns and also achieve goals of tasks. So the purpose of this study is to determination the effect of a Nonlin...
متن کاملHuman Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics
Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...
متن کاملDynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint
Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...
متن کاملOptimal movement variability: a new theoretical perspective for neurologic physical therapy.
Variability is a natural and important feature of human movement. Using existing theoretical frameworks as a foundation, we propose a new model to explain movement variability as it relates to motor learning and health. We contend that mature motor skills and healthy states are associated with an optimal amount of movement variability. This variability also has form and is characterized by a ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human movement science
دوره 30 5 شماره
صفحات -
تاریخ انتشار 2011